where the former cannot be employed. For coürdination of series in two distant places between which there is no stratigraphical connection, paleontological evidence is the only evidence available.

On the Lungs of the Qphidia.

By I'rof. E. D. Cope.

(Read before the American Philosophical Society, May 18, 1894.)

The condition of knowledge as to the rharacters of the lungs of snakes was stated by Stannius, in 1856,* as follows: "The detailed acconnts as to the single or double character of the lungs leave much to be desired. Among Ophidia Angiostomata there possess a single sack, Rhinophis and all Typhlopide which have been examined; as to the Tortricide [llysiidæ], there are apparently species with two lungs (T' xenopeltis) [$=$ Xenopeltis unicolor $]$, and others with a single luag (T. scytate) [= Ilysia scytale]. Among Eurystomata, all the Peropoda (Bua, Python, Eryx) possess apparently two lungs. The Calamarina that have been investigated have one lung. Among Colubrina and Glyphodonta, there are great variations. All the Coronclle of Schlegel possess, according to Schlegel, a single lung. I find the lung single in Rhachiodon scaber [Dasypeltis]. Tropidonotus natrix [Natrix vulgaris] has a very small rudiment of a second lung. Coluber [Spilotes] varialitis possesses, according to Schlegel, the rudiment of a second lung. According to the statement of Meckel, this rudiment is common in Coluber. The Xenodons have, according to Schlegel, a single lung (X. severus and X. rhabdocephalus). In Heterodon I find a rudimental second lung. The Lycodons, according to Schlegel, possess a single lung ; as also do Psammophis and Homalopsis. In Dendroplis colubrina Schlegel found the rudiment of the second lung. In Dipsas, according to Schlegel, there are variations; but he states that D. multimaculata, D. levis and D. annulata [Sibon annulatum], have but one lung. The Achrochordina have but one lung. Among Hydrophidee I found in three species of Hydrophis the lung-sack simple. Meekel states that Platurus has a very small rudiment of a second lung. Among the remaining poisonous snakes there is an insignificant rudiment of the second lung in the Elapina and Crotalina; while the Viperina possess an entirely simple lung."

The absence of tangible external characters which furnish indications of aftioity in the Ophidia is well known. The important characters to be found in the skeleton were mostly pointed out by Müller, and Duméril and Bibron examined and utilized the characters of the dentition. The

[^0]characters derived from the skeleton define only the larger divisions; while those derived from the tecth are not sufficiently numerous and Important, with some exceptions, to indicate all of the affinities of the genera. I think I have added materially to the means at our disposal for classifying the Ophidia, by a study of the hemipenis.* The criteria will however not be sufficient until the entire anatomy is worked out, and in the present paper I add what may be found by a study of the lungs.. It seemed probable to me that an organ which presents so much variation, as above stated by Stannius, must furnish some important clues My examinations embraced about one hundred and fifty species, which represent nearly all the leading types. The results are presented in the following pages. It will be seen that they correct the statements of Schlegel and Stannius in a number of important respects.

The snakes with rudimental posterior limbs (Peropoda), show in the character of their lungs, what they show in the rudimental limbs themselves, and in the hemipenis, the nearest relationships to the Lacertilia. They possess, with an exception to be noted later, two well-developed lungs, one of which is larger than the other. The smaller lung lies to the right side and ventrally, while the larger one lies to the left side and dorsally. In some species the dorsal and ventral relation is more pro. nounced than in others. In the Colubroidea the right or ventral lung is generally present, but of very much reduced proportions, the usual size being from two to five millimeters in length. It is connected with the other lung by a foramen which perforates the tracheal cartilage at a point a little beyond the apex of the heart, and opposite to the proximal part of the dorsal lung. It is sometimes connected to the dorsal lung by a short tube, in which cartilaginous half rings are seen in but two of the genera examined, viz., Heterodon and Conophis. The lumen of the rudimental lung may be lined by the same reticulate structure as is seen in the dorsal lung, or its wa?ls may be smooth. In some Colubroided the rudimental lung is absent, but such species are relatively few.

The dorsal lung may present proximally alongside of the trachea an auricle or pocket, and this is so developed in the genus Heterodon as to reach to the head, without communication with the trachea, other than that furnished by the normal portion of the lung. In the Solenoglypha, without exception, this extension of the dorsallung is present, and extends to the head, and its lumen is contintous with the trachea throughout its length. The same structure exists in the genera Hydrus and Hydrophis; and also in the peropodous genus Ungualia, which differs besides from other Peropoda in laving but one postracheal lung. Finally the tracheal lung, as I shall call it, is distinct from the true lung in Platurus and in Chersydrus. In the former of these genera the trachea is not separate from the lumen; while in Chersydrus it is distinct. It, however, commuleates with the cells of which the lung consists in this genus by a series of regularly placed foramina on each side. There is no lumen in the tracheal lung in

[^1]Chersydrus. In Typhlops we have a still further modification of the tracheal lung. It is without lumen, and is composed of coarse cells of different sizes. These have no communication with the trachea or lung that I can discover, nor any efferent orifice. It has occurred to me that 1his structure, which extencls from the heart to the throat, may not be a pulmonary organ.

I have referred to the dorsal and ventral positions of the two lungs. The rudimental lung is to the right of the dorsal lung in the Colubroidea. but in the Ilysiide it is to the left. It is quite questionable which lung this rudiment in this family really represents. In the Typhlopidæ, the single lung is on the right side and extends from the heart to the liver. It has the position of the rudimental lung of the Colubroidea, and may represent it. I cannot decide this question without further material. In Glauconia there is but one true lung, and this is ventral in position, and originates to the right of the heart, so that in this genus also it may represent the rudimental lung of the Colubroidea. There is here no tracheal lung or organ.*

I now give a synopsis of the characters observed in the species examined.

CATODONTA.

Glauconia dulcis B. and G. A single elongate right lung ; no rudiment of left lung. No tracheal lung.

EPANODONTA.

Typhlops liberiensis Hallow.; T. reticulatus L. A right lung which is not elongate; no rudimental left lung. A cellular body surrounding the trachea, and extending from the heart to the throat, without lumen or connection with the trachea or lung.

The presence of the tracheal lung (?) and the freedom of the maxillary hone are points of resemblance to the Solenoglypha!

TORTRICINA.

Ilysidda.

Two lungs, the ventral one to the left side of the middle line, rudimental, but lined with pulmonary tissue like the other lung, and less reduced than in the Colubroidea.

Cylindrophis maculata L. The right lung extends only to the liver.
llysia scytule L. The right lung is larger.

Rhinophidæ.

Rhinophis oxyrhynchus Schn. One large left lung and very small (3 mm.) right lung; no tracheal lung. Contrary to the statement of Stannius above quoted, as in Colubroidea generally.

[^2]ASINEA.
Peropoda.
I. Two well-developed lungs of unequal size ; no tracheal lung.

Pythonidas.
Python regius Shaw ; P. molurus Linn. ; P. spilotes Lacep. ; Loxocemus bicolor Cope.

Boidre.

Xiphosoma caninum L.; Epicrates cenchriu L.; Chilabotltrus inornatus Rein. ; Boa constrictor L. ; Eunectes murinus L. ; Eryx johnii Russ.

C'harinide.

Besides the absence of coronoid and supra and postorbital bones, this family differs from the Boide in the fusion of the nasal bones into a single plate. Charina bottce Blv.
II. One lung without rudiment of a second ; a tracheal lung extending from true lung, with which it is continuous, to throat.

Ungualiida.
Ungucalia maculata Bibr. ; U. melanura Gray.

Colubroidea.

I. Two well-developed but unequal functional lungs.

Jenopcltide.
Xenopeltis unicolor, Reinwt.
II. One functional lung only; the right rudimental lung sometimes possibly with limited function.

Colubrides.
Lycodoutinæ.
Lycodon aulicus L. ; Boaodon infernalis Gthr. ; Uriechis microlepidotus Pet. ; Stenorhina ventrulis 1). and B.

Colulurinæ.
Elopops modestus Gthr. * ; Coronella girundica Daud. ; Dianodon semicarinatus Cope: Ficimia olivacea Gray ; Sulvadora bairdii Jan. ; Pityophis sayi Hobr.; Epiglottoplis pleurostictus D. and B. ; Spilotes corais Cuv. ; S. pullutus L. ; Coluher quadrilineatus Pallas; C. obsoletus Say ; C. quadrivittatus Holbr. ; Bascanium constrictor L. ; B. flagellum Catesby ; B. montovariam D. and B. ; Zamenis atrovirens Shaw ; Z. korros L. ;

[^3]Cyclophis cestivus L. ; Drymobius pantherinus Merr. ; D. boddcertii Seetz.; D. margaritiferus Schl. ; Crossanthera melanotropis Cope ; Herpetodryas carinatus L.; Leptophis prestans Cope; L. mexicamus D. and B. ; L. smaragdinus Boie.; Dendrophis picta L. ; Dasypeltis palmarum Leach.

Dipsadinæ.
Dipsas llandingii Hallow. ; Himantodes gemmistratus Cope; Rhinobothyrum lentiginosum Scop.; Trimorphodon biscutatus D. and B.; Sibon septentrionale Kenn. ; Malpolon lacertinum Wagl.; Cladophis kirtlandii Hall ; Dryophis fulgüla Daud.; Passeritu mycterzzons L.

Chrysopeleinæ.
Chrysopelea ornata Shaw.
Nenodontinx.
Catostoma ladium D. and B.; Ferancia abreura Holbr.; Abastor erythrogrammus Daud.; Opheomorphus fuscus Cope; Helicops angulatus Linn.; II. baliogaster Cope; Dromicus parvifrons Cope; Halsophis len comelas D. and B. : Xenodon rhabdocephatus Wied. ; I. ungustirostris Peters: Lystrophis dorlignyi D. and B.; Heterodon nasicus B. and CG.; II. platyrhinus Latr. ; IHypsirhynchus ferox Gthr. ; Uromucer oxyrhynchus D. and B. ; U. catesbyi D. B. Right lung larger in Uromacer.

Scytalinæ.
Mydrocalamus quinquevittatus D. and B. ; Erythrolamprus venustissimus L. ; E. fissidens Gthr. ; Oxyrrhopus plumbeus L. ; O. fitzingerii Jav. ; Conophis pulcher Cope; C. sumichrastii Cope; Mrenolepis nasutus Cope ; Jaltris dorsalis Gthr. ; Philodryas viridissimus L.; P. olfersii Licht.

Natricinæ.
Generally a proximal auricle or pocket. Eutcenia proxima Say ; E. sirtalis L., s. s. sirtalis, obscure and parietatis; Natrix fasciate L.; N. thombifera Hallow.; N. taxispilota Holbr.

Appendix to Colubride.

In the African Thrasops flarigularis Hallow. the right (rudimental) lung measures 5 mm . The trachea is enormously expanded transversely, simulating a tracheal lung, but its inferior wall contains the tracheal cartilages which extend its entire width, and it contains no cells or trabectux. An artery with lateral branches extends its entire length, which is from the posttracheal lung to the throat. This character distinguishes this genus from Leptophis.

In the following species I found no trace of the right lung.
Colubrinæ. Rhinochilus lecontei B. and G.; Cemophora coccinea Blum.; Ophibolus doliatus L.; O. getulus L.; Pityophis melanoleucus Daud.

Xenodontinæ. IIalsophis angulifer D. and B.; H. vudıi Cope.

Leptognathinæ. I propose this subfamily as distinct from the Xenodontine, on account of the presence of a large tracheal lung which is continuous with the normal lung, and with the trachea, and extends to the throat. Leptognathus nebulatus L.; L. garmanii Cope.
Scytaline. Tachymenis strigatus Gthr.; Phalotris lemniscatus D. and B.; P. tricolor D. and B.; Erythrolamprus bipunctatus Gthr.

Natricinæ. Cerberus boaformis ; Pseudaspis cana L.

Acrochordide.

Chersydrus granulatus Merr. In this species the heart is at the middle of the length of the body, and the normal lung is posterior to it, extending nearly to the vent. No rudimental lung. A tracheal lung, composed of coarse cells and without lumen, extends from the heart to the head, and is cliscontinuous with the true lung. The trachea is closed, but communicates with the tracheal lung by a series of symmetrical pores on each sides

Najida.

Onc lung and a rudiment; no tracheal lung. Pseudechis porphyriacus Shaw ; Diemenia reticulata Gray ; Naja tripiduns L.; Bungarus semifusciatus Kuhl.

Elapida.

No rudimental nor tracheal lung. Elaps lemniscatus L.; E. futvius L.; E. corallinus L.; E. multifasciatus Jan.

Hydroplidac.

I. One lung and no ruliment, continuous with tracheal lung, which extends to head.

Hydrophis hardwichii Gray (a slight constriction between tracheal and posttracheal lungs) ; H. elliotii Gthr.; Iydrus bicolor Daud.
II. A rudimental right lung connected with the left lung, which is separate from the large tracheal lung.

Platurus laticaudatus L.

SOLENOGLYPHA.

A tracheal lung, coutinuous with the normal lung.

Causidce.

No rudimental lung.
Causus rhombeatus Licht.

Dendraspidide.

No rudimental lung.
Dendruspis polylepis Gthr.

Viperide.

No rudimental lung.
Clotho arietans L.
Crotalida.
I. No rudimental lung.

Bothrops lanceolatus L.; Ancistrodon piscivorus Lacep.; Crotalophorus catenatus Raf. ; Crotalus adamanteus Beauv.; C. confluentus Say.
II. With a rudimental right lung.

Bothrops pictus T'sch.; B. erythrurus Cant.; Teleuraspis schlegelii Berth.; Ancistrodon contortrix L.; Crotalus horridus L.

THE SYSTEMATIC VALUE OF TIIE PULMONARY CHARACTERS.

I have no doubt of the propriety of the separation of the Ungualida from the other Peropoda, on account of its pulmonary characters. Nor is there any doubt in my mind of the necessity of the separation of the Leptognathine from the Xenodontine, for similar reasons. The genus Heterodon differs very much from the Xenodontine, in the possession of an enormuus diverticulum of the lung, but as it is not present in the allied genus Lystrophis Cupe, its wider distinction may be a questionable proceeding. The rery marked characters of the genus Chersydrus characterize the family, as well as the osteolugical characters. It remains to be seen whether the family I termed the Nothopsidx, but which Boulenger unites with the Chersydrida, agrees with it in pulmonary chnacters. The remarkable tracheal lung or gland distinguishes the Epanodonta from the Catodonta, emphasizing that observed in the osteology of the skull. The peculiar form and relations of the maxillary bone in this group resemble those of the Solenoglypha, and there may be some possible commection between the groups. The tracheal body may be a degenerate tracheal lung, such as that division possesses.

The value of the rudimental right lung as a character of the Colnbroidea is increased by my investigations In only two genera have I found it present or absent, viz., Halsophis and Pityophis. I am not sure but that I may yet find it in the P. melanoleucus, where I have tailed hith erto, but I am sure that it is present in some species of Halsnphis and wanting in others. A natural group of American Colubrinæ, appears to be characterized by its absence, viz., Rtsinochilus, Cemophoria and Ophibolus; all genera with an entire anal shield. The development of cartilages in the brouchial foramen or tube of the rudimental lung is not a constant character. I found it in one Heterodon plutyrhimus and not in another ; it is present in Conophis pulcher, but absent in C. sumichrastii.

The rudimental lung is often concealed hom view aud difficult to discover. The best test of its presence is the foramen which connects it with

PROC. AMER. PHILOS. SOC. XXXIII. 145. 2 C. PRINTED JUNE 18, 1894.
the trachea, which will generally be found piercing the cartilage of the latter near the apex of the heart. The rudimental organ may then be found by inserting a bristle, and observing its destination through the more or less transparent tissues. In but one instance have I found a rudimental lung without a connecting foramen, viz., in the Mexican Ficimia olivacea. On the other hand, the foramen may terminate in a small blind sac.
The pulmonary characters may be determined without much dissection. The position of the heart must be first ascertained, and a longitudinal median incision made in the abdominal wall. In all forms except the Epanodonta and Catodonta, the trachea will be found passing to the left side of the heart, and entering the lung near its apex. By splitting the trachea, not too uear its abdominal border, on turning the free margin upwards as the suake lies on its back, the furamen bronchiale will be seen and its lumen can be explored. The tracheas is concealed by the cesoplagus, which must be drawn to the left side of the body in order to make the examination. The examination of the tracheal lung requires the division of the abdominal wall further towards the head.

explanation of plates.

The figures variously reduced; the heart and liver are turned over to show the trachea and lungs.

> Plate Xi.

Typhlops liberiensis Hallow.
Plate NII.
Charina botte Blv.
Plate Xifi.
Chersydrus granulatus Merr.
Phate NIV.
Coluber quadrivittatus Holbr.
Piate XV.
Heterodou plutyrhinus Latr.

Plate XVI.

Crotalus confluentus Say.

Lettering.

RE, (Esophagus ; St., Stomach ; I., Intestine; R., Rectum ; C., Cite cuur ; Tr. Trachea ; R. L., Rightlung ; L. L., Leftlung ; T. L. Tracheal lung ; B. $H_{\text {., }}$, Bronchial foramen; L., Liver ; $G .$, Gall bladder ; K, Kidney ; U., Ureter; TI, Testis ; V. D., Vas deferens; Oo., Ovary ; Oll., Uviduct; V., Vagina: F., Fontanelle; C. A., Corpus adiposum ; 1. ., Heart ; A. R., Aorta root ; Cal., Carotid ; J., Juglar vein ; V. C., Vina cavi.

[^0]: * Zootomie der Amphibien, p. 108.

[^1]: * Amcrican Naluralist, 1893, p. 177.

[^2]: *Cf. Peters, Reise nach Mozambique, iii, p. 100, Pl. xiva, 1SS2.

[^3]: * Position uncertain; perhaps a lycodontine.

